
N95- 70868

CFD ASSESSMENT OF THE CARBON MONOXIDE AND NITR/C OXIDE FORMATION

FROM RD-170 HOT-FIRE TESTING AT MSFC

Ten-See Wang and Paul McConnaughey

NASA Marshall Space Flight Center, Huntsville, Alabama 35812

Sail Warsi

Sverdrup Technology, Inc., Huntsville, Alabama 35806

and

Yen-Sen Chen

Engineering Sciences, Inc., Huntsville, Alabama 35805

w

w

SUMMARY:

Computational Fluid Dynamics (CFD) technology has been used to assess the exhaust

plume pollutant environment of the RD-170 engine hot-fLring on the F1 Test Stand at Marshall

Space Flight Center. Researchers know that rocket engine hot-fLring has the potential for forming

thermal nitric oxides (NOx), as well as producing carbon monoxide (CO) when hydrocarbon fuels

are used. Because of the complicated physics involved, however, little attempt has been made to

predict the pollutant emissions from ground-based engine testing, except for simplified methods

which can grossly underpredict and/or overpredict the pollutant formations in a test environment.

The objective of this work, therefore, has been to develop a technology using CFD to describe the

underlying pollutant emission physics from ground-based rocket engine testing. This resultant

technology is based on a three-dimensional, viscous flow, pressure-based CFD formulation, where

wet CO and thermal NOx finite-rate chemistry mechanisms are solved with a Penalty Function

method. A nominal hot-f'u'hag of a RD-170 engine on the F1 stand has been computed. Pertinent

test stand flow physics such as the multiple-nozzle clustered engine plume interaction, air

aspiration from base and aspirator, plume mixing with entrained air that resulted in contaminant

dilution and afterbuming, counter-afterburning due to flame bucket water-quenching, plume

impingement on the flame bucket, and restricted multiple-plume expansion and turning have been

captured. The predicted total emission rates compared reasonably well with those of the existing

hydrocarbon engine hot-firing test data.
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DISCUSSION:

RD-170 is a regeneratively cooiedi_four-nozzle clustered engine which bums Kerosene

fuel with liquid oxygen and was used to thrust Energia launch vehicles. Thermochemical analysis

was performed for the thrust chamber at a nominal operating condition and the equilibrium

products at the nozzle exit were used as the input to the propulsion system. CHt.9423 was used as

the chemical formula for Kerosene fuel. The analysis indicated that a significant amount of CO

(24.569%) existed at the nozzle exit. This is the amount that could be dumped into the

environment and can only be chemically reduced through afterburning. To accurately predict the

contaminant concentrations of the exhaust plume, finite-rate chemical kinetics are included in the

numerical modeling. The plume chemistry occurring in the flame-bucket/test-stand flow physics

includes the afterbuming of CO to C02, thermal NOx formation and decomposition, counter-

afterburning effect on CO conversion due to water quenching and its reduction effect on NO,

formation. These are described with a wet CO and a thermal NO, finite-rate mechanisms.

Production of thermal NO, is generally negligible at low temperatures. It is therefore expected

that most of the thermal NO, will be formed in the flame front, .i.e., the plume mixing layer near

the exit plane of the nozzles.

The FI Test Stand, standing 230 feet tall with a flame bucket (deflector) attached to the

aspirator, was used to test F1 engines with which Saturn launch vehicles were propelled. Not

only does the flame bucket quenches the rocket exhaust plume with deluge water, but also turns

the vertical flowing exhaust plume to that of a horizontal direction, after which the plume-expands

and dissipates into the atmosphere. Fig. 1 shows the computational domain for the F-1 Stand.

The RD-170 engine is mounted vertically, fLring down into the flame bucket. Due to symmetry,

only half of the domain was actually computed. The four RD-170 nozzles (mounted beneath the

platform that is not modeled) and the aspirator are described by Zone 1 which con_s 63,360

grid points. The aspirator itself is mounted on top of the flame bucket such that _eair

entrainment can be promoted and the plumes are centered while impinging at a predetermined

area in the flame bucket (approximately 45-degree elbow at the bottom). Ambient air is allowed
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to be entrained through the top and four side boundaries of Zone 1. The flame bucket is modeled

by Zone 2 which composes of 72,000 grid points. The plumes are then quenched through water

deluge injecting from all four walls inside the bucket. The water injection pattern is designed as

such that most of the water injects at the plume impingement area. After passing through the

flame bucket, the quenched plumes expand into the vast surrounding atmosphere (Zone 3, not

shown) which is described by 156,975 grid points.
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Fig. 1 Computational domain for the RD-170 nozzles and FI Test Stand.
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A frozen chemistry analysis was performed at first for a small period of elapsed time in

order to establish an initial plume in the system. This not only prepared for the initial flowfields

for the computation of subsequent parallel finite-rate chemistry and finite-rate chemistry with

water-quenching cases, but also served as an excellent check of mass conservation using carbon

balance. This procedure is allowed since the total pollutant emission rates during a nominal

steady RD-170 hot-f'Lring are desired and not those of an actual start-up sequence. The goals are

therefore to compute the growth rate of NO_ and the disappearance rate of CO until they achieve

asymptotic states. The result of the computation indicated a large amount of air was entrained

through the aspirator. Entrained from surroundings close to the open platform, the air accelerated

and mixed with the plume boundary layer and entered the opening of the aspirator, where it

continuously mixed with the advancing plume boundary layer. In addition to cooling and dilution

of the contaminant, the entrained air also provides the source of reactants for afterbuming and

thermal NO_ formation. Most of the thermal NO_ is formed near the aspirator level where it has

the most mixing and the hottest temperature. This is in agreement with the characteristics of the

Zeldovich mechanism. It can also be seen that the plumes impinge on the 45'degree bend section

of the flame bucket where it encounters the most water-quenching, that agrees with the original

design. The quenched plumes then turn and partially hit the outer wall, where it moves

horizontally out, following the direction of the flame bucket.

The averaged mass fraction for CO in the add water-quenching case is more than that of

the purely finite-rate chemistry case due to the counter after-burning effect of deluge water, and

vice versa for that of CO2. The higher level of OH in the finite-rate case shows a higher degree

of after-burning reaction, due to higher overall plume temperature without water-quenching.

Total NO_ production drops significantly in the add water-quenching case. The concentration of

NO_ in the add water-quenching case is almost two orders of magnitude lower than that in the

finite-rate chemistry only case. This is not surprising since the extent of thermal NO_ formation

depends heavily on the local temperature. The effect of water deluge on the formation of NO, is

the reduction in peak temperature caused by the heat capacity of water. The computations were

stopped when the growth rates of the plumes reached their approximate asymptotic states.

Obviously, the plume energy of the f'mite-rate chemistry is higher than that of the add water-
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quenching case. Correspondingly, the plume volume growth rate of the finite-rate case is larger

than that of the add water-quenching case. These CFD results ultimately serve as the basis (input)

for the subsequent meteorological cloud dispersion calculation, where the plume volume growth

rate helps determining the eventual plume size and the plume energy growth rate helps

determining the magnitude the plume buoyancy force.

A comparison of the calculated criteria pollutant total emission rates for RD-170 with

those measured for other Kerosene-fueled engines is shown in Table 1. Since thrust levels are

quite different, the measured emission rates were extrapolated to a RD-170 level by thrust ratios.

Although the operations of the engines and test stands are vastly different, and there is a question

on whether the point sampling technique used in the measurement representative of the whole

plume. The agreement in terms of order-of-magnitude for these engines is reasonable and

encouraging. Among RD-170 CFD computations, the emission rate of CO is maximum and that

of NOx is zero for the frozen chemistry case, since afterburning reactions are not turned on,

whereas the effect of water deluge has reduced the CO conversion rate from 83% of the f'mite-

rate chemistry case to that of 67%. This is of interest since the effect of water deluge also has

reduced the NO, production by 95%.
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Table 1. Total emission rates

Engine

MA5B/hot-fmng

Thrust, lbf

370,000

NOx, lb/sec

5.4/25.9"

CO, lb/sec

133/641"

MA3S/laot-firing 165,000 2.7/29.1" 210/2,266"

MA3B/hot-f'tring 60,000 1.5/45.6" 138/4,111"

RS27/hot-firing 205,000 1.2/10.6" 94/820"

RD-170/CFD

Frozen 1,777,000

Finite-Rate 1,777,000

1,382

8.0 232

0.4 463Add Water 1,777,000

"based on extrapolation of measured emission rate to a RD-iT0 by thrust ratio
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